Algebraic properties of the concurrent star operation

Barbara Klunder

Nicolaus Copernicus University, Toruń Poland

The theory of traces has two independent origins: combinatorial problems and the theory of concurrent systems. The formal language theory over traces, limited to recognizable and rational trace languages, was developed by Ochmański (see [3]). It is known that rational expressions with classical meaning are useless for expressing recognizable trace languages. For example classical iteration T^* of a recognizable trace language T need not be recognizable.

Ochmański introduced another meaning of rational expression which he called concurrent meaning. In this way we obtain concurrent iteration T^{\otimes} of a trace language T which does not put out of the set of recognizable languages. By definition concurrent iteration T^{\otimes} of T is classical iteration of a language |T| called the decomposition of T. We shall study algebraic properties of those operations.

Let $\langle M, \cdot, 1 \rangle$ be a monoid and $L \subseteq M$. A monoid morphism $\eta : M \mapsto S$ into a finite monoid $\langle S, \cdot, 1 \rangle$ recognizes L if $\eta^{-1}\eta(L) = L$. The language L is recognizable if there exists a monoid morphism that recognizes L. We denote by Rec M the set of all recognizable subsets of M.

Let $L, K \subseteq M$. Then $L \cdot K = \{lk ; l \in L, k \in K\}$ is the product of L and K. By L^* we denote the (universe of) submonoid of M generated by L. For an alphabet X, X^* denotes the free monoid generated by X.

The set Rat M of all rational languages in M is the smallest set conaining all finite subsets of M and closed on set-theoretical sum \cup , product and iteration.

Let X be a finite alphabet and let I be an irreflexive and symmetric relation on X, called *independence relation*. The couple (X, I) is then called a concurrent alphabet. The reflexive and symmetric relation $D = X \times X \setminus I$ is called the *dependence relation*. The concurrent alphabet (X, I) induces the set of equations $E = \{ab = ba ; (a, b) \in I\}$, and the quotient monoid $M(X, I) = X^*/E$ is called the *trace monoid*. The letter I always denotes independence relation and the letter D denotes dependence relation. Trace monoid will be denoted by M(X, I). Members of trace monoids are called traces and sets of them are called trace languages.

One can extend I and D to $X^* \times X^*$: $(u, v) \in I$ iff $alph(u) \times alph(v) \subseteq I$ and $(u, v) \in D$ iff $(alph(u) \times alph(v)) \cap D \neq \emptyset$, and even to $M(X, I) \times M(X, I)$: $(\alpha, \beta) \in I$ iff $\alpha = [u], \beta = [v]$ and $(u, v) \in I$.

Theorem 1 ([3], 6.3.3) The set Rec M of all recognizable subsets of any trace monoid M = M(X, I) is closed under product: $\forall_{A,B \in Rec M} AB \in Rec M$.

Let us recall the definition of connectivity. This quite natural notion is crucial for the theory of recognizable trace languages.

Definition 1 Let (X, D) be a concurrent alphabet. A word $w \in X^*$ is connected (with respect to D) iff the graph $(alph(w), (alph(w) \times alph(w)) \cap D)$ is connected; a trace $[w] \in M(X, D)$ is connected iff w is a connected word. The trace language $T \subseteq M(X, D)$ is called connected iff any trace of T is connected.

Definition 2 Let M = M(X, D) be a trace monoid and let α, γ be nonempty traces in M. The trace γ is a component of α iff γ is connected and $\alpha = \beta \gamma$ for some $\beta \in M$, such that $alph(\beta) \times alph(\gamma) \subseteq I$ The decomposition of a trace $\alpha \neq [1]$ is the set $|\alpha|$ of all components of α , The decomposition of [1] is defined as $|[1]| = \{[1]\}$. The decomposition of a trace language $T \subseteq M$ is the trace language $|T| = \bigcup \{|\alpha|; \alpha \in T\}$.

Let **Rat** $M = \langle Rat \ M, \cup, \cdot, ^{\star}, \emptyset, \{1\} \rangle$ be the algebra of all rational languages in M. The algebra **Rat** M is a homomorphic image of an algebra **Rat** X^{\star} for suitable X. The set $Rec \ M$ for a trace monoid M is a universe of an algebra of the same similarity type as **Rat** M because the following theorem holds.

Theorem 2 ([3], 6.3.15, 6.3.11) Let M = M(X, D) be a trace monoid and let $T \subseteq M$ be recognizable. Then languages $|T|, T^{\otimes} = |T|^*$ are recognizable. In fact Rec M is the smallest subset of 2^M containing finite subsets and closed under $\cup, \cdot, | |, \otimes$. In addition the set Rat M is closed under those operations too.

The algebra $\operatorname{Rat} X^* = \langle \operatorname{Rat} X^*, \cup, \cdot, *, \emptyset, \{1\} \rangle = \operatorname{Reg} X$ of all rational (regular) X-languages was studied in literature. One of the main problems concerns its axiomatization (see [1]). It was proved by Redko (1964) that its equational theory is not finitely based. But there exists finite implicational axiom system of the regular sets. The first example of such a system gave Gorshkov and Arkhangelskii (1987). This system is different from that of Kozen.

A Kleene algebra (see [2]) is an algebraic structure $K = \langle K, +, \cdot, \star, 0, 1 \rangle$ satisfying the following:

1. $\langle K, +.., 0, 1 \rangle$ is an idempotent semiring with zero and unit;

2. $\langle K, +, \cdot, \star, 0, 1 \rangle$ satisfies the quasiequations:

 $0a = 0 \tag{1}$

$$a0 = 0 \tag{2}$$

$$1 + aa^{\star} \leq a^{\star} \tag{3}$$

$$1 + a^* a \leq a^* \tag{4}$$

$$b + ax \le x \quad \to \quad a^* b \le x \tag{5}$$

$$b + xa \le x \quad \to \quad ba^* \le x \tag{6}$$

where \leq refers to the natural partial order on K: $a \leq b \leftrightarrow a + b = b$.

The natural question arises: Is the algebra **Rec** $M = < Rec \ M, \cup, \cdot, \otimes, \emptyset, \{1\} >$ a Kleene algebra?

EXAMPLE Let M(X, I) be a trace monoid such that $(X, I) = (\{a, b\}, \{(a, b), (b, a)\})$. Let $T = \{[ab]\}$ and $X = \{[w] ; w \in L(r)\}$, where L(r) is a language defined by regular expression $r = a^+b^+ + 1$. X is recognizable because r is star-connected (Proposition 6.3.11 [3]). Then $T \cdot X \leq X$, but $T^{\otimes} = |T|^* = \{[a], [b]\}^* = M$ and $T^{\otimes} \cdot X \not\leq X$. So the question has a negative answer.

The situation is completely different in the case of rational languages.

Theorem 3 For any monoid M the algebra **Rat** M is a Kleene algebra.

Let M = M(X, I) denote a trace monoid.

Lemma 1 Let $A, T, X \in Rat \ M$ satisfy $A \cup |T|X \subseteq X$, then $T^{\otimes}A \subseteq X$.

Lemma 1 explains the reason to consider the decomposition operation. Let $\alpha \in M(X, I)$ be a trace. It is obvious that $|\alpha|$ is a finite set of elements which commute with each other. In addition α is a product of all elements of $|\alpha|$ in any order; thus such a decomposition is unique up to a permutation of components.

Lemma 2 Let X, Y be trace languages of M, then $||X||Y|| \subseteq |X||Y| \cup |X| \cup |Y|$.

Lemma 3 Let T be a trace language such that $T \cdot T$ is connected. Then T and T^{\otimes} are connected.

Corollary 1 Let T be a trace language, then $|T^{\otimes}| \subseteq T^{\otimes}$ and $T \subseteq T^{\otimes}$.

We summarize previous results.

Definition 3 A Generalized Klenee algebra is an algebraic structure $\underline{K} = \langle K, +, \cdot, \otimes, | |, 0, 1 \rangle$ satisfying the following:

- 1. < K, +.., 0, 1 > is an idempotent semiring with zero and unit with annihilating element 0: 0a = a0 = 0;
- 2. $< K, +.., \otimes, ||, 0, 1 > satisfies the quasiequations:$

$$|0| = 0 \tag{7}$$

$$|1| = 1$$
 (8)

$$|a+b| = |a|+|b|$$
 (9)

$$||a|| = |a| \tag{10}$$

$$||a||b|| \leq |a||b| + |a| + |b| \tag{11}$$

$$\begin{aligned} |a^{\otimes}| &\leq a^{\otimes} \end{aligned} \tag{12}$$

$$\begin{array}{rcl} a &\leq & a^{\otimes} \\ 1 + |a|a^{\otimes} &< & a^{\otimes} \end{array} \tag{13}$$

$$1 + a^{\otimes}|a| \leq a^{\otimes} \tag{15}$$

$$b + |a|x \le x \quad \to \quad a^{\otimes}b \le x \tag{16}$$

$$b + x|a| \le x \quad \to \quad ba^{\otimes} \le x \tag{17}$$

$$a \le |b| \to a = |a| \tag{18}$$

$$|a^2| = a^2 \quad \rightarrow \quad |a| = a \tag{19}$$

$$|a^2| = a^2 \quad \to \quad a^{\otimes} = |a^{\otimes}| \tag{20}$$

where \leq refers to the natural partial order on $K: a \leq b \leftrightarrow a + b = b$.

Lemma 4 For every trace monoid M the algebra $\operatorname{Rat}_C M = <\operatorname{Rat} M, \cdot, \otimes, ||, \emptyset, \{\varepsilon\} >$ is generalized Kleene algebra.

Theorem 4 The following quasiequations are theorems of generalized Kleene algebras.

$$a^{\otimes}a^{\otimes} = a^{\otimes} \tag{21}$$

$$a^{\otimes \otimes} = a^{\otimes} \tag{22}$$

$$\begin{array}{rcl}
1 + aa^{\otimes} & \leq & a^{\otimes} \\
1 + a^{\otimes}a & < & a^{\otimes} \\
\end{array} \tag{23}$$

$$a \le b \to a^{\otimes} \le b^{\otimes} \tag{26}$$

$$1 + |a|a^{\otimes} = a^{\otimes}$$
(27)

$$1 + a^{\otimes}|a| = a^{\otimes} \tag{28}$$

PROBLEM Is the definition of generalized Kleene algebras implicational system of axioms for rational or recognizable trace languages?

References

- CONWAY, J. H., Regular Algebra and Finite Machines, Chapman and Hall, 1971.
- [2] KOZEN, D., A completeness theorem for Kleene algebras and the algebra of regular events, Information and Computation 110 (1994), 366-390.
- [3] OCHMAŃSKI, E., Recognizable trace languages, in The Book of Traces ed. V. Dekert, G. Rozenberg, World Scientific 1995, 167-203.